Data Flood or Explosion: IT Challenges in the New “Normal”

Gregg Wyant, Intel IT CTO and Strategy, Architecture, & Innovation GM
Dr. John Pormann, Scalable Compute Support Center
Duke University

INTS001
Agenda

• Environment
 – The New “Normal” – Data Explosion
 – The Internet of Things
 – Context Aware Computing

• IT Challenges
 – Intel’s Data Growth
 – Managing Intel’s Data
 – Event-Driven Data Center Models

• Impact of Research Computing Workloads on Power Consumption – Duke Example

• Summary
The New “Normal” - Data Explosion

• 2010: Crossing zettabyte/year in Data Creation
 – Current estimates are .98 – 1.2 zettabytes in 2010
 – A zettabyte is a trillion gigabytes
 – Growth increasing 60%+ Annually

• Internet of Things
 – Machine to Machine
 – Growing faster than Human to Human

• Unstructured Content Explosion
 – Non-textual Data, Sensor Integration, 3D Content Creation, Efficient Perception, Context Awareness, Access to Databases

Every 2 days the equivalent of all data from the dawn of civilization up to 2003 is being created…
A Day in the Life of Our Data

The Internet of Things

Collect
Compute
Transport
Store & Protect
Consumption And User Experience
The Internet of Things (IoT)

• An ever-growing network of devices (both passive and intelligent) that communicate state or content for global consumption (often advertised as “internet-enabled/ready”)

• Some examples:
 - Passive Devices (RFID) - fixed data when queried
 - Sensing Devices - generate and communicate information about environment or item status when queried
 - Moderate Processing Devices - formatted messaging, with the capability to vary content with respect to time and place
 - Enhanced Processing Devices - enhanced processing capability that facilitate decisions to communicate between devices without human intervention (machine to machine)

• 2015: 15 billion connected devices “real-life” Event-driven
IT Opportunities Cross All These Areas

Managing and taking advantage of massive amounts of digital data

In my Life
Terabytes of Photos & Videos
- Wearable sensors
- Health sensors
- Sensor nets
- Pollution sniffer
- Computer vision
- Speech recognition
- Metadata tagging
- Brainwave sensors
- 3D content creation
- Home energy apps
- Retail preferences
- Research Services

For my Institution
Petabytes of business/scientific info
- Cloud Computing
- Distributed storage
- Security/Trust
- Secure enclaves
- Malware protection
- Embedded Device-Network Security
- In Vehicle Protection
- SSD for datacenters

On the Internet
Hundreds of Exabytes per year
- Silicon photonics
- Fast copper I/O
- Router Bricks
- Networking
- Wireless radios
- Data services
- Connectedness
- Manageability
- Provisioning
- Remote mgmt

Deriving Value from Data
- Gesture recognition
- Visual computing
- Media mining
- Visual search
- Lifelogging
- Embedded Usage Segments

Processing Data
- Cloud Computing
- Tera-scale chips
- TPT computing
- Parallel Programming
- Exa-scale systems
- Power Management
- Efficient thermal envelopes

Collecting & Creating Data
- Cloud Computing

Storing & Protecting Data
- Cloud Computing

Sharing & Transporting Data
- Cloud Computing

Between our Things
Context Aware, Machine Learning, Predicting and Anticipating, Acting and Making Life Easier
IT Context Aware Computing

Taking action based on physical, logical, temporal and social changes of users and/or their environment

<table>
<thead>
<tr>
<th>Point Solutions</th>
<th>Loosely Coupled Solutions</th>
<th>Intelligently Coupled Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client based</td>
<td>Client/Server based</td>
<td>Services based</td>
</tr>
</tbody>
</table>

Timing
- **0-2 years**: Client based
- **2-5 years**: Loosely Coupled Solutions
- **>5 years**: Intelligently Coupled Solutions

Examples

<table>
<thead>
<tr>
<th>timing</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2 years</td>
<td>- Context Aware enabled application</td>
</tr>
<tr>
<td></td>
<td>- Personal/custom UI</td>
</tr>
<tr>
<td></td>
<td>- Democratizing information</td>
</tr>
<tr>
<td></td>
<td>- Online Identity (shared trust models)</td>
</tr>
<tr>
<td></td>
<td>- Location context aware services</td>
</tr>
<tr>
<td></td>
<td>- Smart-Call-Center Solution</td>
</tr>
<tr>
<td></td>
<td>- Knowledge Worker Productivity</td>
</tr>
<tr>
<td></td>
<td>- Auto locate & configure/secure resources - historical work</td>
</tr>
<tr>
<td></td>
<td>- Mobile Computing</td>
</tr>
<tr>
<td>2-5 years</td>
<td>- Portal Customization experience (user specified- reduce customer effort)</td>
</tr>
<tr>
<td></td>
<td>- Sales Force Automation</td>
</tr>
<tr>
<td></td>
<td>- Intelligent</td>
</tr>
<tr>
<td></td>
<td>- Self-segmentation</td>
</tr>
<tr>
<td></td>
<td>- CRM context rich services</td>
</tr>
<tr>
<td>>5 years</td>
<td>- Portals extends to mobile B2C</td>
</tr>
<tr>
<td></td>
<td>- Hyperpersonalized experiences - context rich services</td>
</tr>
<tr>
<td></td>
<td>- Convergence between fixed and mobile, M2M activities</td>
</tr>
<tr>
<td></td>
<td>- IT Productivity</td>
</tr>
<tr>
<td></td>
<td>- Diversity in the contact center (phone->web->video)</td>
</tr>
<tr>
<td></td>
<td>- Knowledge Workers Productivity</td>
</tr>
<tr>
<td></td>
<td>- Ambient Information - push</td>
</tr>
<tr>
<td></td>
<td>- Mobile Enterprise App. Platforms</td>
</tr>
</tbody>
</table>

Context Aware and Internet of Things improve User Experience by Harnessing the Data Explosion
Agenda

• Environment
 – The New “Normal” – Data Explosion
 – The Internet of Things
 – Context Aware Computing

• IT Challenges
 – Intel’s Data Growth
 – Managing Intel’s Data
 – Event-Driven Data Center Models

• Impact of Research Computing Workloads on Power Consumption

• Summary
Intel IT Compute/Storage Growth

Design
Design Computing

Office
General Purpose

Manufacturing
Factory + Test

Enterprise
E-biz + supply chain

70% of servers in Intel are in D. 30% of servers in Intel are in O, M, and E

Mandate: Enable Efficient Growth

~45% YOY Growth
(Design Compute)

~35% YOY Growth
(Data Storage)

1,2 Source. Intel IT, September 2009. EDA MIPS (Electronic Design Automation - Meaningful Indicator of Performance per System) is a weighted performance measure.
IT Challenges – Managing Data

• Maintaining “state” on our internal cloud of ~100,000 servers
 - Ever-increasing compute and storage needs
 - Continuously adjust use based on compute demand, power, etc
 - Capturing rich state information and acting on it in real time
 - Real-time BI to manipulate our NetBatch workloads more efficiently

• Revolution of In-Memory Analytics and BI Usage
 - Harness very large memory/compute engines for joint BI appliances and Complex Event Processing (CEP)
 - Large models of state for infrastructure (cloud server workloads) or business activities (supply chain details or customer interaction) could establish fluid business rules to respond to state changes

• Energy-Efficient Data Processing

As Data Dramatically Increases in Size and Complexity, new Paradigms of Sensing and Energy Management are Needed to Manage Compute Infrastructure
Analytics on Mass Data

• Goal: Design project execution predictability based on job lifecycle data
 – More than 900 million job records in the Netbatch system now and growing by 20 million per week
 – Mining and analyzing this huge amount of data to discover useful information/knowledge and patterns
 – Research manipulates the huge amount of data and builds predictive models on job run time and wait time to help with decision making on which set of jobs to run where and when

• The resulting workload demand can coupled with the power/thermal demand to maximize efficient usage of the Data Center

Improving NetBatch Scheduling Policy, Resource Utilization as well as the Quality of Services
Creating Event-Driven Data Center Models

Instrument: Performance and Power; Infer: Power and Cooling
Agenda

• Environment
 – The New “Normal” – Data Explosion
 – The Internet of Things
 – Context Aware Computing

• IT Challenges
 – Intel’s Data Growth
 – Managing Intel’s Data
 – Event-Driven Data Center Models

• Impact of Research Computing Workloads on Power Consumption

• Summary
Impact of Research Computing Workloads on Power Consumption

Scalable Computing Support Center
Duke University
http://wiki.duke.edu/display/SCSC
scsc at duke.edu

John Pormann, Ph.D.
jpbl at duke.edu
Disclaimer

“The views expressed in this presentation are those of the author(s) and do not necessarily represent the views of, and should not be attributed to, Intel Corporation. The author of this article is responsible for the content of the articles, including accuracy of the information and conclusions therein.”
Scalable Computing Support Center at Duke University

- We are a campus-wide service and support center
 - Not an academic center, no academic research aims
 - We are directly tied in to the Provost’s Office and OIT (campus IT)

- Research computing hardware
 - Duke Shared Cluster Resource
 - Condor grid
 - Emerging architectures

- Consulting

- Training
Duke Shared Cluster Resource

- Started in 2003 with 64-machine “seed” from the University
 - “Condo” model

- Currently:
 - ~730 machines, ~4100 CPU-cores
 - 70+ research groups, 650+ users

<table>
<thead>
<tr>
<th>Year Installed</th>
<th>Platform</th>
<th>CPU</th>
<th>CPUs/Cores</th>
<th>CPU TDP</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003-2006</td>
<td>Dell 1U (various)</td>
<td>Intel Xeon (various)</td>
<td>dual/dual</td>
<td>(various)</td>
<td>273</td>
</tr>
<tr>
<td>2007</td>
<td>Dell 1950 1U</td>
<td>Intel X5355 (2.65GHz)</td>
<td>dual/quad</td>
<td>120W</td>
<td>11</td>
</tr>
<tr>
<td>2008</td>
<td>Dell M600 Blade</td>
<td>Intel E5420 (2.5GHz)</td>
<td>dual/quad</td>
<td>80W</td>
<td>283</td>
</tr>
<tr>
<td>2009</td>
<td>Dell M610 Blade</td>
<td>Intel E5520 (2.25GHz)</td>
<td>dual/quad</td>
<td>80W</td>
<td>63</td>
</tr>
<tr>
<td>2009</td>
<td>Dell M610 Blade</td>
<td>Intel X5550 (2.65GHz)</td>
<td>dual/quad</td>
<td>95W</td>
<td>99</td>
</tr>
<tr>
<td>2010</td>
<td>Dell M610 Blade</td>
<td>Intel X5650 (2.66GHz)</td>
<td>dual/hex</td>
<td>95W</td>
<td>7</td>
</tr>
</tbody>
</table>

Scalable Computing Support Center
http://wiki.duke.edu/display/scsc
Measurement System

- Oracle/Sun GridEngine batch scheduler
 - Automatically collects CPU, load-average, memory usage, etc.
 - Allows a custom “load sensor” script

- A separate cron job pulled the SGE data and wrote it to a time-stamped file
 - 15 min snapshots

```
% qhost --F
HOSTNAME    ARCH
-------------------------------------
global      -
aeroel-n01  lx26-amd64
  hl:arch=lx26-amd64
  hl:num_proc=2.000000
  hl:cpu=13.500000
  hl:watts=205.000000
...
aeroel-n02  lx26-amd64
  hl:arch=lx26-amd64
  hl:num_proc=2.000000
  ...
```
Dell/IPMI Interface

- All the Dell blades have a separate Blade Management Controller (BMC)

- Dell engineers pointed us at the IPMI interface to pull the power data out of the BMC

```bash
% ipmitool -I open sdr list
Ambient Temp   | 19 degrees C   | ok
Temp           | -69 degrees C  | ok
Temp           | -64 degrees C  | ok
System Level   | 192 Watts      | ok
VTT PG         | 0x01           | ok
...```
WattsUp Meters

For older systems which did not have internal power measurement:

△ https://www.wattsupmeters.com

% ./wattsup -l ttyUSB0
Power Consumption – Raw Data

![Graph showing power consumption vs CPU usage]
Intel® Xeon® Processor X5355 /1U vs. E5420/Blade

130W less power

BUT: 2007-era 1U vs. 2008-era Blade
Intel® Xeon® Processor E5420 vs. E5520

Consistent 30W drop from 0-100% Load
Intel® Xeon® Processor E5520 vs. X5550

15W difference at idle

43W difference at load
Intel® Xeon® Processor X5550 vs. X5650

4W difference at idle

17W difference at load

2x4 vs. 2x6 CPU-Cores
Conclusions

- Under realistic load conditions ...

- From 2007 to present, we’ve seen significant reductions in power per server
  - 1U to blade ... 130W savings
  - Intel® Xeon® Processor E54** to E55** ... 30W savings

- The Intel Xeon processor X-series seem to be efficient in that their idle power is comparable to that of the E-series processors

- (Preliminary Data) The new Intel Xeon Processor X56** seem to have comparable power draw to the Intel Xeon processor X55** .. but with 50% more cores
Future Work

- Tie this power consumption data to real $$$ savings
  - Including A/C savings if possible
  - Automatic power-off of unused machines

- Continue collecting data from older systems

- Head-to-head comparison for 1U and blade
  - (to drive purchase and retirement decisions)
Summary/Call To Action

• Data will continue to grow exponentially as the Internet of Things (IoT) and data complexity accelerates
  – Manage your data before it manages you
  – Invest in understanding workloads to better optimize compute
  – Explore new opportunities to enable Context Aware Computing

• Server refresh enables more energy efficient computing as basis for emerging complex autonomous systems that combine physical data with workload data
  – Implement an active refresh strategy to migrate to the latest Intel® Xeon® processor-based servers
  – Instrument for physical data (power, thermal, etc)
  – Invest in Data Center analytics to improve capacity, performance and health
Additional sources of information on this topic:

• Other Sessions
  – INTS002, DCCS004, DCCL001, SDDS005

• Demos in the showcase
  – Booths 125 and 162 IT Innovation

• IT@Intel white papers at www.intel.com/IT:
  – “An Enterprise Private Cloud Architecture and Implementation Roadmap”
  – “Architecting Software as a Service for the Enterprise”
  – “Intel Cloud Computing Taxonomy and Ecosystem Analysis”

• Contact info:
  – innovation@intel.com
  – jbp1@duke.edu
Session Presentations - PDFs

The PDF for this Session presentation is available from our IDF Content Catalog at the end of the day at:

intel.com/go/idfsessions

URL is on top of Session Agenda Pages in Pocket Guide
This Session is Using Electronic Session Evaluations

You will receive an email with a link to the online Session Evaluation

Completing the evaluation automatically enters you into a drawing to win a Starbucks Gift Card.

Thank you for your input!
Q&A
Legal Disclaimer

- INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPETY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

- Intel may make changes to specifications and product descriptions at any time, without notice.
- All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.
- Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.
- Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

- Intel, Xeon, Intel Sponsors of Tomorrow, and Intel Sponsors of Tomorrow Logo and the Intel logo are trademarks of Intel Corporation in the United States and other countries.
- *Other names and brands may be claimed as the property of others.
- Copyright ©2010 Intel Corporation.
Risk Factors

The above statements and any others in this document that refer to plans and expectations for the second quarter, the year and the future are forward-looking statements that involve a number of risks and uncertainties. Many factors could affect Intel’s actual results, and variances from Intel’s current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be the important factors that could cause actual results to differ materially from the corporation’s expectations. Demand could be different from Intel’s expectations due to factors including changes in business and economic conditions; customer acceptance of Intel’s and competitors’ products; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. Additionally, Intel is in the process of transitioning to its next generation of products on 32nm process technology, and there could be execution issues associated with these changes, including product defects and errata along with lower than anticipated manufacturing yields. Revenue and the gross margin percentage are affected by the timing of new Intel product introductions and the demand for and market acceptance of Intel’s products; actions taken by Intel’s competitors, including product offerings and introductions, marketing programs and pricing pressures and Intel’s response to such actions; defects or disruptions in the supply of materials or resources; and Intel’s ability to respond quickly to technological developments and to incorporate new features into its products. The gross margin percentage could vary significantly from expectations based on changes in revenue levels; product mix and pricing; start-up costs, including costs associated with the new 32nm process technology; variations in inventory valuation, including variations related to the timing of qualifying products for sale; excess or obsolete inventory; manufacturing yields; changes in unit costs; impairments of long-lived assets, including manufacturing, assembly/test and intangible assets; the timing and execution of the manufacturing ramp and associated costs; and capacity utilization. Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset impairment charges, vary depending on the level of demand for Intel’s products and the level of revenue and profits. The majority of our non-marketable equity investment portfolio balance is concentrated in the flash memory market segment, and declines in this market segment or changes in management’s plans with respect to our investment in this market segment could result in significant impairment charges, impacting restructuring charges as well as gains/losses on equity investments and interest and other. Intel’s results could be impacted by adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Intel’s results could be affected by the timing of closing of acquisitions and divestitures. Intel’s results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust and other issues, such as the litigation and regulatory matters described in Intel’s SEC reports. An unfavorable ruling could include monetary damages or an injunction prohibiting us from manufacturing or selling one or more products, precluding particular business practices, impacting our ability to design our products, or requiring other remedies such as compulsory licensing of intellectual property. A detailed discussion of these and other factors that could affect Intel’s results is included in Intel’s SEC filings, including the report on Form 10-Q for the quarter ended March 27, 2010.

Rev. 5/7/10